FUNCTIONAL SPECIFICATIONS
FOR THE 99/4 DISK PERIPHERAL

CONSUMER GROUP
MAIL STATION 5890
2301 N. UNIVERSITY
LUBBOCK, TEXAS 79414
COPYRIGHT 1980

TEXAS INSTRUMENTS
ALL RIGHTS RESERVED.

MARCH 28, 1983

Contents

1 INTRODUCTION 3
2 APPLICABLE DOCUMENTS 5
3 SUPPORTED FILE MANAGEMENT OPTIONS 7
4 INTERFACE TO BASIC 9
4.1 OPEN Statement v i i v et e e e e e e e e 9
4.1.1 File Name Specificationso v i v v v s e, g .
4.1.2 File OrganizationOption 10
4.1.3 Open-mode Operation v v v v it v it e e e it e e e 11
4.1.4 Record-Type Option i v i i e e i, 12
4.1.5 File-TypeOption i i i s i et e e e 13
4.1.6 File-Life Option 13 |
y 4.1.7 Examples i i i i ittt e e e e e e e e s 18
4.2 CLOSE Statement0 it it it e et e e e e et 13
4.3 PRINT Statement0 it i it ittt ot e e e e e e e 14
4.4 INPUT Statement it ittt it s it ot ee e e, 14
4.5 RESTORE Statemento vovomsmn e 14
4.6 DELETE Statement “ et e b e e e e m e e e m e e e s e e e, 14
4.7 OLD Command. . . . v v v vt e it e e ot ee e et e e e . 15
4.8 SAVE Command0 v vt i ittt i et e e et e e e e 15
4.9 EOF Punction............. e e e e e e et e e e e e e 15
5 CATALOG FILE ACCESS FROM BASIC 17
6 FILE PROTECTION - 19
7 FILES SUBPROGRAM - - 21
8 I/0 ERROR CODES - 23

2 CONTENTS

The information and/or drawings set forth in this document and all rights in and to inventions
disclosed herein and patents which might be granted thereon disclosing or employing the materials,
methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments.

‘No disclosure of information or drawings shall be made to any other person or organization
without prior consent of Texas Instruments. VERSION 2.0

Chapter 1

INTRODUCTION

The information contained in this document is intended to give a complete functional specification
of the 99/4 Disk Peripheral as seen from the Basic user stand point.

Chapter 2

APPLICABLE DOCUMENTS

o I'ile Management Specification for the 99/4 Home Computer (version 2.5, Revised 25 February
1983)

¢ Home Computer BASIC Language Specification (Revision 4.1, 12 April 1979)
¢ Home Computer Disk Peripheral Hardware Specification
o Functional Specification for the 99/4 Disk Peripheral (Version 3.0, Revised 28 March 1983)
- @ GPL Interface Specification for the 99/4 Disk Peripheral (Version 2.0, revised 28 March 1983)

- -

Chapter 3

SUPPORTED FILE
MANAGEMENT OPTIONS

The disk peripheral supports most of the options in the File Management Spec. for the 99/4 Home
Computer.
The supported options include:

]
e

Sequential and Relative record (random access files)

Fixed and Variable length records

¢ Internal and Display file types

Output, Input, Update, and Append access modes

Program lLoad and Save functions

The I/0 routines supported by the disk peripheral are:

OPEN - Open an existing file for access. This routine must have the drive number or the

disk name and the filename to open.

CLOSE - Close a. file for access. The PAB can be released and the disk peripheral software

deallocates some buffer area in VDP memory. Since the number of files tat can be open at
once is limited it is advised each file is closed as soon as it is no longer needed.

READ - Read a logical record from an open file.

WRITE - Write a logical record to an opén file.

RESTORE/REWIND - relocate the file read/write pointer to a given location in the file. For
sequential files this can only be the beginning of the file, whereas for relative record files, the

file read/write pointer can be relocated to any logical record in the file by giving the record
number.

) —triary.
et .

LOAD - Load a program file into VDP memory. The disk peripheral will check the correct
file type before the program is loaded (see section 4.7).

7

8 CHAPTER 3. SUPPORTED FILE MANAGEMENT OPTIONS

¢ SAVE - Save a program in VDP memory onto the named disk file. The disk peripheral does
not check for legal BASIC memory images, so this routine, like the LOAD routine, can be
used for transferring binary memory data to and from disk files. Note that the disk file is
marked as a program file however, so that files created with a SAVE command can only be
read with a LOAD command.

o DELETE - Delete the indicated file from the given disk, delete frees up the space occupied
by the file for future use.

o SCRATCH RECORD - This function is not supported by the disk peripheral.

o STATUS - Indicates current status of a file. This includes the logical and physical EOF flags
and the protection flag.

Chapter 4

INTERFACE TO BASIC

This section will provide a general overview of how the disk peripheral presents itself to the BASIC
user. For the BASIC related details the reader is referred to the Home Computer BASIC Language

Specs.

4.1 OPEN Statement

The BASIC OPEN statement allows the user to access files stored on accessory devices, such as
the disk peripheral. It provides the link between a file name and a BASIC file number. Once the
file has been OPENed.

The general form of the OPEN statement is:

OPEN #file number:"file name"[,option([,option[,...]1]]

In which option” can be any of the OPEN options available to the user. The user can select
the following options:

oy

File organization - SEQUENTIAL or RELATIVE

Open mode - INPUT, QUTPUT, APPEND, or UPDATE
Record type - FIXED or VARIABLE

File life - PERMANENT |

4.1.1 File .Name Specifications

In order to indicate which drive and which file on it the user wants to access, he must specify a file
name in the OPEN statement. This can be in either of two forms:

-+

DSKx.file-id or DSK.volname.file-id

in which x is the drive ID number (1-3), ”volname” is a volume name ID and file-id” is an individual
file ID. Both ”volname” and "file-id” can be strings of up to 10 characters long. Legal characters
for these strings are all the ASCII characters, except the ”.” character and the space.

The first form of the file name specification shows the direct drive ID option. The user can
specify either DSK1, DSK2, or DSK3 as drive numbers. Only the specified drive is searched for
the given file-id..

10 CHAPTER 4. INTERFACE TO BASIC

The second form of the file name specification is the symbolic form. The disk drive is not
explicitly assigned, but assigned through the volume name (”volname”). All drives are searched in
sequence for the given volname, i.e. DSK1 first, then DSK2, then DSK3. The first drive with the
given volname on its disk will be used for the file-id search. It is allowed to use two or more disks
with the same volname in the system, however, if the specified file-id doesn’t exist on the first drive
with the given volname, the other disk drive(s) with the same volname will not be searched.

Whichever form is used, the file-id has to be unique for the selected drive, i.e. if a new file is
created, the file-id used must differ from all other file-ids on that drive, or the existing file will be
replaced by the new one, unless it is protected.

The file-id in the OPEN statement has to correspond to a data file. If the file was created by a
SAVE command, an OPEN for that file will give an error, unless the file is opened for QUTPUT
mode, in which case the program file will be replaced by the new data file.

The actual number of Allocatable Units (AUs) allocated can be computed by using the following
rules: '

- 1. VARIABLE length records have an overhead of one byte per record plus one byte per AU.

2. Logical records never cross AU boundaries, i.e. an integer number of logical records has to
fit in an AU.

A direct result of these rules is that the maximum length of VARIABLE length records is limited
to 254 (2 less than the AU size).

Initial allocation of a file is done to avoid scattering of data blocks over a diskette. NOTE:
Initial allocation does NOT change the End of File markers, i.e. if 100 records have been initially
allocated, the file will still have its EOF set at record Q!!

The initial allocation is only used if a file is opened for OUTPUT mode or if a nonexisting file
is opened for UPDATE or APPEND mode. It is ignored if the file is opened for any other case.

iy

4.1.2 File Organization Option

The two file organizations the user can specify are:

1 SEQUENTIAL Access the file in sequential order, comparable to tape-access. The file
- 'mdy ‘be accessed in any of the four I/0 modes. Record type may be specified as FIXED or
VARIABLE. File type may be specified as INTERNAL or DISPLAY.

2. RELATIVE - Access the file in random order. The open mode can be any of the available four

modes, and the record type must be FIXED, and may be either INTERNAL or DISPLAY.
Due to BASIC limitations, the combination RELATIVE and APPEND is not supported.
.. This combination is trapped out as an error.

The default file organization is SEQUENTIAL.

Both the SEQUENTIAL and RELATIVE specifications can optionally be followed by an initial
record allocation specification. This spec. indicates the number of records to be allocated initially.
In case the record length has been speuﬁed as VARIABLE, the allocation will be made for maximum
length records. -

The number of records initially allocated has to be less than 32767, in order to stay within the
record addressing range of a file management system.

4.1. OPEN STATEMENT 11

4.1.3 Open-mode Operation

BASIC accepts four access modes:

1. INPUT - Data in a file can only be read. The file has to exist before it can be read.

2. OUTPUT - Data can only be written to a file. A new file is created if one does not exist. If
one of the same name exists it will be overwritten unless it is protected.

3. APPEND - Data can only be written at the end of the file. If the file does not exist already
this mode is equivalent to QUTPUT. Due to the limitations of the console, this mode can
only be used for VARIABLE length records.

4. UPDATE - Data can be both written and read. If the file does not exist, it is created.
Otherwise data in an existing file can be read and/or changed and new data can be added or
old data can be deleted. UPDATE mode is generally used for files OPENed in RELATIVE

mode, although SEQUENTIAL is permitted. VARIABLE length record files can be OPENed
in UPDATE mode, however, once a new record is written, all the original data behind this

record will be lost. This mechanism is mainly intended for use in intermediary files, i.e. first
the data is written out, then it is read back without closing the data file.

Note that for UPDATE mode, it is never possible to decrease the size of a file. A re-write will
only reset the EOF markers, without releasing the datablocks.
~ The default OPEN mode is UPDATE, i.e. the file can be both read and written.

OPEN -#250:"DSK1.FILEA"

This statement will open a file called "FILEA” on the disk in drive #1 and its file reference

number in BASIC is 250. The attributes assigned to this file are:

File-organization - SEQUENTIAL
Open-mode - UPDATE
Record-type - VARIABLE
File-type - DISPLAY.

File-life - PERMANENT

Record length - If none existed before it will be 80 else it will be equal to the length of the file
when it was created. |

OPEN #24:"DSK.MASTER.TABLES" ,INPUT,RELATIVE, INTERNAL

Opens a file called "TABLES” on a disk called "]MASTER”. Drives will be searched in sequence
till one is found with the disk called "M ASTER?”, then it will be searched for a file called »TABLES”.

If it exists it will be made accessible to BASIC otherwise you get an error. The specifications for
this file are: T s

File-organizatit:m - RELATIVE

12 CHAPTER 4. INTERFACE TO BASIC

Open-mode - INPUT
Record-type - FIXED
File-type - INTERNAL
File-life - PERMANENT

Record-length - is equal to the stored length for the file "TABLES”.

OPEN #1: "DSK3.TESTDATA",0UTPUT,FIXED 40, INTERNAL,RELATIVE

Creates a random access file called "TESTDATA?” on drive 3. If it exists already, it is overwritten
with the new data. The attributes for this file are:

File-organization - RELATIVE
Open-mode - OUTPUT
Record-type - FIXED, 40 characters
File-type -]NTERNAL

File-life - PERMANENT

.~ - OPEN #1:"DSK1i.",INTERNAL,FIXED 38, INPUT

This command will open the catalog file for sequential input. For more information see.section
5. .

4.1.4 Record-Type Option

The record-type option is used to specify the size of each record in the file. This size can be either
FIXED, &l records have the same length, or VARIABLE, with a maximum length optional. If the
file organization specified is RELATIVE, the only legal type is FIXED, which is also the default
for relative record files.

Both the FIXED and the VARIABLE uptmns can be followed by an expression indicating the
actual or maximum record length. Since the length is used to reserve buffer space in the BASIC
interpreter, a user is advised to select the length as precisely as possible. Larger record lengths

mean fewer variables can be used by BASIC.

~The disk peripheral defaults the record lengths for both the FIXED and VARIABLE options to
. 80 characters.The default record-type for SEQUENTIAL files is VARIABLE; for RELATIVE files
it is FIXED.

If a file is opened for any I/O mode other than OUTPUT, and it already exists, the record
length, has to match the stored length If no record length is given the DSR will default to the
stored length. -~

The maximum record length for FIXED records is 255, and for VARIABLE length records it is
2b4. -'

4.2, CLOSE STATEMENT 13

4.1.5 File-Type Option

The file-type option can be used to specify the format of data to be stored in the file. There are
two formats available:

1. DISPLAY - Stores data in readable format, i.e. as it would be printed on a printer. If the
data has to be read back by the machine, this format is not recommended.

2. INTERNAL - Stores data in machine readable format. Since most files on the disk will be
read by machine, this format is recommended. It relieves the user of storing separate data
like quotes and commas in the file in order to make it suitable for an INPUT command. It
avoids the overhead of converting the internal machine representation for the numbers and
strings into a representation that is readable for humans and vice versa.

Aga.in,‘if the file exists and the I/0O mode is not OUTPUT, the specification has to match the
value stored at file creation. BASIC uses DISPLAY as a default, which means that if data is stored

in INTERNAL format, the user always has to indicate this in the OPEN command.

4.1.6 File-Life Option

BASIC only recognized the PERMANENT option as a file-life specification. Since it is also the
default it can be eliminated.

4.1.7- Examples

These examples are to clarify the OPEN statement. Remember that whenever an attribute for a
file does not match the one stored it will result in an error. However, SEQUENTIAL files can be
opened as RELATIVE and vice-versa if the record typé was FIXED.

The key word DELETE is optional with the CLOSE statement. In case DELETE is specified,
the file is not only disconnected from the file number, but the disk space taken up by the file is
released, and the file-id is erased from the disk’s catalog. This means the file can no longer be
accessed, not even with an OPEN statement (see DELETE statement).

4.2 CLOSE Statement

The CLOSE statement closes the association between the BASIC fileenumber and the file. After

the CLOSKE statement is performed, BASIC can no longer access that file, unless it is OPENed
again.,
The general form of the CLLOSE statement is:

~ CLOSE #file-number[:DELETE]

A few examples of the CLOSE statements are:

1. CLOSE #240 - close the file associated with #240

2. CLOSE #2&6:DELETE - same as above, but also deletes the file

14 CHAPTER 4. INTERFACE TO BASIC

4.3 PRINT Statement

The PRINT statement can be used to write information out to a file that has been previously
OPENed. The PRINT statement can only be used for files that have been opened for access in
either OUTPUT, UPDATE, or APPEND mode. A PRINT to a VARIABLE record length file will

always set a new EOF mark, causing data behind the current record to be lost.
The general form of the PRINT statement is:

PRINT #file-number[,REC record-number] [:print-list]

For a detailed description of the PRINT statement, refer to the 99/4 BASIC Language User’s
Reference Guide.

4.4 INPUT Statement

The INPUT statement can be used to read information from an existing file. The INPUT statement
can only be used for files that have been OPENed for access in either INPUT or UPDATE mode.
The general form of an INPUT statement is:

INPUT #file-number[,REC record-number] :variable-1list

" For a detailed description of the INPUT statement, refer to the 99/4 BASIC Language User’s
Reference Guide.

- 4,5 RESTORE Statement

The RESTORE statement repositions an open file to its first record, or at a specific record if the

file is opened for RELATIVE mode and the RESTORE contains a REC clause.
The general form for the RESTORE statement is:

RESTORE #file-number[,REC record-number]

Generally RESTORE is used to reposition afile for a second read of the same data. However,
using the REC clause, the user may position the current access pointer anywhere within or without
the file, if the file is opened for RELATIVE mode. In this case the file may be sequentially read,
starting at a random point within a file.

If the file is opened for QUTPUT or APPEND mode, the RESTORE statement will not be
performed and an error will be given.

L

4.6 DELETE Statement

The DELETE statement may be used to remove files that are no longer needed from the disk. This
will free up space allocated for the file.

The general form for the DELETE statement is:

DELETE "file-name"

4.7. OLD COMMAND 15

The DELETE statement is a statement for which no previous OPEN is required. Therefore it

is possible to DELETE a file which is still OPEN for access. If this happens, any future reference
to the file, including a CLOSE, will give an error. An example of the described sequence may be:

100 OPEN #2:“DSK1.FILE"Y,0UTPUT
110 PRINT #2:"BELLO"

120 DELETE "DSK1.FILE“

130 CLOSE #2

Here line 130 will give an error, since the file no longer exists at that point in the program.

4.7 OLD Command

The OLD .command allows for retrieval of previously stored programs from a disk. The program

must have been stored with a SAVE command, since the disk software will not allow loading of a
data file with the OLD command.

The general form for the OLD command is:
OLD file-name

Since QLD is a system command that cannot be used in a program, the file-name can be an
unquoted string.

OLD DSK1.PROGRAM

Is perfectly legal.

4.8 SAVE Command

Ly

The SAVE command can be used to save the current program in the 99/4 onto a disk file, which
then can be reloaded with an OLD command.
The general form for the SAVE command is:

SAVE file-name

Like OLD, SAVE is a system command, allowing the user to type the file name without quotes.
SAVE will create a new file overwriting any existing file with the same name unless it has been
protected.

4.9 EOF Function

- The EOF function can be used to test for the end of file during I/O operations. Three conditions
are indicated by the EOF routine:

0 Not EOF (End of File)

1 Logical EOF (End of File)
-1 Physical EOM (End of Medium)

16 CHAPTER 4. INTERFACE TO BASIC

Physical EOM can only be detected if the device is at its physical end and the file is at its
logical end.

The general form for the EOF function is:

EOF(file~number)

The EOF indication only has meaning in the case of sequential access to files, since for random
access the next record to be read or written cannot be determined from the current one. Therefore,
the EOF subroutine will assume that the next record to be read/written is the sequentially next
record.

The logical EOF indicates that the next sequential read/write operation will attempt to access
a record outside the current file. In general this indication will only be used for read operations.

Because of pending BASIC INPUT conditions, it is possible that the EOF subroutine indicates
"EOF”, even if the next INPUT statement will yield no EOF error, since it can read data from
the current record. Something similar can happen if it indicates "no EOF” and the next INPUT
statement reads more than one record. In this case the INPUT might be terminated with an error.
To avoid this type of situation, the user is advised to use only non-pending INPUT statements
(INPUT statements without a trailing comma), so that each record corresponds to one INPUT
statement.

For random access to files, the EOF subroutine can only give meaningful results if the access is
converted to ”semi-sequential” access, i.e. if the record is positioned through a RESTORE state-
ment and then sequentially accessed through any I/0 statement without REC clause specification.
After the RESTORE the EOF subroutine will indicate that the condition for the next record is
(EOF, EOM or available), without issuing an I/0O error.

Note that there is one EOM condition that cannot be detected by the EOF subroutine. This
condition occurs when the datablocks on a disk become so scattered that not enough datablocks
can be allocated for a file. In this case a PRINT operation will be aborted with an I/0 error, even

though there is enough space available on the disk, and the EOF function does not indicate an
EOM condition. | |

Note however that the software file protection does not offer any protection against complete
disk re-initialization. The only way to avoid file loss in that case is to write protect” the disk
itself by placing a tab over the notch on the right side of the disk. This will disallow any write
operation to the disk, giving a hard error as soon as the disk is being accessed for write operations.
Notice that this type of write protection is only intercepted on the actual write operation. The
disk software will not disallow destructive access to the disk until the moment it actually tries to
modify part of the disk.

Chapter 5

CATALOG FILE ACCESS FROM
BASIC

The BASIC user can access a disk catalog like a read-only disk file. This disk file has no name and
is of the INTERNAL, FIXED length type. An example of a CATALOG file OPEN is:

OPEN #1:“DSK1.",INPUT,INTERNAL,RELATIVE

Since BASIC will automatically default the record length to the current value, it is recommended
that the user not specify this length. If he wishes it is 38. Every other record length will result in

an error.

The CATALOG file acts like it is protected, as it will only allow INPUT access. An attempt to
open the CATALOG file for any other mode will result in an error.

The data in the CATALOG file is written in the standard BASIC INTERNAL format. Every

record in the file contains four items: one string and three numerics. The string indicates the name
of the disk, containing up to 10 characters. The numeric items indicate the following: .

1. Record-type - Always zero for this record.
2. Total number of AUs on the disk - for a standard 40-track disk this should be 358.

~ 3.: Total number of free AUs on the disk.

Record numbers 1-127 contain information about the corresponding file in the CATALOG. Non-
existing files will give a null-string as the first item, and 0s for the remaining three items. Existing
files will indicate the file name in the string item, and the following in the numeric items:

¢ File-type - negative if file is protected.

bl

1. DISPLAY/FIXED datafile

2. DISPLAY/VARIABLE datafile

3. INTERNAL /FIXED datafile

4, INTERNAL/VARIABLE datafile

5. Memory image file (e.g. BASIC “program)

o Number of AUs allocated by the file.

17

18 CHAPTER 5. CATALOG FILE ACCESS FROM BASIC

¢ Number of bytes per record.

A type b file will always indicate a 0 in its third item, since the number of bytes per record has
no meaning.

Chapter 6

FILE PROTECTION

A user may select to protect any of the files on a disk. This can be done with the disk manager

package.
~ The effect of the protected file is that the system disallows any type of destructive access to
that file, the following actions are disabled.

e SAVE to a protected file.
¢ OPEN a protected file in a mode other than INPUT.

19

Chapter 7

FILES SUBPROGRAM

The default number of files that can be opened simultaneously is three. To modify this number,
the FILES subprogram has been provided. The syntax for this subprogram is:

CALL FILES(x)
NEW

Where "x” is a number from 1-9, indicating the number of files that can be opened at once.
Arithmetic expressions and variables are not allowed.
'~ The NEW command following the FILES call has to be considered as part of the FILES call,
since FILES will destroy some pointers used by the BASIC interpreter.

WARNING
The usage of the FILES subprogram in a BASIC program is not allowed, and doing so will

.~ - cause strange results. Likewise a call to FILES without a NEW command immediately following

it may cause strange results, ranging from loss of program to loss of data on diskettes. The only
way to avoid this is to use the FILES subprogram only in the above defined manner!

The FILES subprogram will check only for the above defined syntax.

CALL FILES(2)*2 will execute the same as CALL FILES(2)

The disk has a standard overhead buffer of 534 bytes. Each open file adds 518 bytes to this
buffer area for the disk. If this would leave the user with a buffer of less than 2K bytes as may
occur in a 4K system, the files program will return with an INCORRECT STATEMENT error.
 In case of a syntax error before the right parenthesis ()”), an INCORRECT STATEMENT
will occur.

21

Chapter 8

I/0 ERROR CODES

)

| I1/0 errors detected by the disk peripheral software are always indicated by BASIC in the following
format:

* I/0 ERROR xy [IN 111]

The digits "xy” indicate the type of error that has occurred. The first digit (x) indicates the
1/0 routine in which the error occurred. The following I/0O routine codes can be given:

0 Errorin ‘;')PEN routine

| ﬁﬁor in CLOSE routine

2 Error in READ routine

3 Error in WRITE routine |) L | | ’
4 Error in RESTORE routine

6 Error in LOAD routine used during OLD

8 Error in SAVE routine

| T Eﬁur in DELET-Ermutine

® Error in STATUS routine used in EOF

The second digit (y) indicates the type of I/O error that has occurred. There are 8 different
codes with the following meaning: .

0'BAD DEVICE NAME - the device could not be found
1 DEVICE WRITE PROTECTED - unprotect the disk and try again

2 BAD OPEN ATTRIBUTE - one or more open options were illegal and didn’t match the file
characteristics. T e

3 ILLEGAL 'bPERATION - should not be generated by BASIC for the disk peripheral. Indi-
cates usage of non-existing I/0 code. o | |

23

T e -.:: I L .
- -
+f J‘*h -{-II A= A

24 CHAPTER 8. I/O ERROR CODES

4 OUT OF SPACE - a physical end of the file was reached, there was insufficient space on the
disk to complete the operation. |

5 ATTEMPT TO READ PAST EOF

6 DEVICE ERROR - a hard or soft device error was detected. This may occur if the disk was

not initialized or was damaged, the system was powered down during disk writes, the unit
did not respond, etc.

7 FILE ERROR - the indicated file or volume doesn’t exist; the file type doesn’t match the
access code (program file versus data file).

